The 2-rainbow bondage number in generalized Petersen graphs
نویسندگان
چکیده
Abstract: A 2-rainbow domination function of a graph G = (V, E) is a function f mapping each vertex v to a subset of {1, 2} such that ⋃ u∈N(v) f (u) = {1, 2} when f (v) = �, where N(v) is the open neighborhood of v. The weight of f is denoted by wf (G) = ∑ v∈V �f (v)�. The 2-rainbow domination number, denoted by r2(G), is the smallest wf (G) among all 2-rainbow domination functions f of G. The 2-rainbow bondage number, denoted by br2(G), is the minimum cardinality among all sets E ⊆ E such that γr2(G − E ) > γr2(G), where G − E � denotes the resulting graph after all edges in E are removed from G. In this paper, we show that br2(P(n, 2)) = 2 when n ⩾ 15 and n ≡ 3, 9 (mod 10), and br2(P(n, 2)) ⩽ 4 when n∕ ≡3, 9 (mod 10).
منابع مشابه
The lower bound for the number of 1-factors in generalized Petersen graphs
In this paper, we investigate the number of 1-factors of a generalized Petersen graph $P(N,k)$ and get a lower bound for the number of 1-factors of $P(N,k)$ as $k$ is odd, which shows that the number of 1-factors of $P(N,k)$ is exponential in this case and confirms a conjecture due to Lovász and Plummer (Ann. New York Acad. Sci. 576(2006), no. 1, 389-398).
متن کاملOn the complexity of some bondage problems in graphs
The paired bondage number (total restrained bondage number, independent bondage number, k-rainbow bondage number) of a graph G, is the minimum number of edges whose removal from G results in a graph with larger paired domination number (respectively, total restrained domination number, independent domination number, k-rainbow domination number). In this paper we show that the decision problems ...
متن کاملOn the 2-rainbow domination in graphs
The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism G K2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is sho...
متن کاملGraceful labelings of the generalized Petersen graphs
A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...
متن کامل2-rainbow domination in generalized Petersen graphs P(n, 3)
Assume we have a set of k colors and we assign an arbitrary subset of these colors to each vertex of a graph G. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this assignment is called a k-rainbow dominating function of G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G...
متن کامل